EVALUATION OF SEA SURFACE SALINITY VARIABILITY IN THE EAST CHINA SEA OBSERVED BY THE AQUARIUS INSTRUMENT

Seung-bum Kim (JPL)
Jae-hak Lee (Korean Institute of Ocean Science and Technology)
Paolo de Matthaeis (GSFC)

Data provision by I.C. Pang, Jeju Natl. Univ., S. Korea
Funded by OSST
Results available in JGR 2014 special issue.
Motivation

- Challenging retrieval
 - Land contamination
 - Radio frequency interference
- Routine monitoring of SSS
 - Lacking (East China Sea)
 - Discontinued
- 5th largest river runoff

[Lagerloef, ESR]

[RFI probability, SMOS, CESBIO, Sept 2012]
Outline

- Motivation

- Evaluation
 - Using in situ data
 - Using regional ROMS model with simultaneous river input
 - Effects of land contamination and RFI

- Science
 - Upper ocean salinity balance
 - Impact from the regional drought

- Used v2.5.1 standard product
In situ observation

- By Korea Ocean Research Dev. Inst and/or Japanese collaborators
- CTD salinity record at 0.5m depth (2011); 2-5m (2012; three are 7-10m)
- Early October 2011 (O); late September 2012 (X); weak solar insolation/stratification
Aquarius vs CTD

- Better match with in situ along ascending tracks
Effect of radio-frequency interference (RFI)

- T_A and T_F are brightness temperatures before and after RFI filtering → indicates the RFI presence.
- Descending tracks are contaminated heavily → choose ascending observations.
Effect of land contamination

- 0.5% land contamination
 - About 0.75 K (or 1.5 psu) perturbation to Aquarius SSS
 - Mitigated through land correction

- Away from the coast by 1 pixel, the correction amount is fairly insensitive to radiometric aspect of land emission modeling.
In situ validation

<table>
<thead>
<tr>
<th>in psu</th>
<th>Aquarius</th>
<th>In situ</th>
<th>AQ - in situ</th>
<th>Dist2coast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct 2011 (mean)</td>
<td>33.71</td>
<td>34.07</td>
<td>-0.36</td>
<td>300km</td>
</tr>
<tr>
<td>(stdev)</td>
<td>0.52</td>
<td>0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept 2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area-north (mean)</td>
<td>31.450</td>
<td>31.455</td>
<td>-0.005</td>
<td>100km</td>
</tr>
<tr>
<td>Area-north (stdev)</td>
<td>0.79</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area-south(mean)</td>
<td>32.89</td>
<td>33.66</td>
<td>-0.77</td>
<td>300km</td>
</tr>
<tr>
<td>Area-south(stdev)</td>
<td>0.67</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Ascending tracks only
- Despite gaps in spatial/temporal matchup, the difference is smaller than 1 psu. There were no major rain or typhoon events.
Aquarius and numerical model

- Model: Regional model (ROMS) by Jeju Univ. Korea. 6 depth (1, 10, 20, 30, 50, 75). 1/12th deg.

- Aquarius (original) is lower than model by 0.98 PSU – the bias may be due to unfiltered RFI.

- Once the bias is removed, the two matches with an RMSE of 0.55 PSU (0.48 to 0.62 PSU over all 3 tracks) → 0.24 to 0.31 PSU over a month – close to the open ocean L1 requirement.

- The spatial SSS variability matches well between model and data (lower panel): within 0.5 PSU mostly.
Is unfiltered RFI a quasi-bias?

beam 2, ascending orbits only

beam 3, ascending orbits only
Comparison with river discharge

- **Full-signal**
 - Correlation is 0.65 with no time lag between Aquarius and discharge
 - Aquarius SSS tracks the regional drought
River discharge vs Aquarius

- Seasonal signal
 - Correlation is 0.7
 - discharge leading SSS by 20 to 60 days

\[\frac{dS}{dt} \times \frac{1}{S} = \frac{(E-P-R)}{H} + (u,v) \cdot \nabla S + \text{subsurface} + \text{mixing} \]
Summary

- East China Sea
 - Coastal sea with 5th largest river runoff (regional hydrology balance)
 - Land contamination
 - RFI
 - Argo non-present
 - Analysis of L2 allows SSS monitoring on challenging areas

- Aquarius vs CTD (and model)
 - Aquarius and in situ data agree within 0.3 to 0.8 psu
 - Matches with a model with 0.24 to 0.31 psu over a month – close to the open ocean L1 requirement.
 - SSS variability has strong correlation with river discharge (correlation is 0.65).

- RFI
 - Undetected RFI
 - Appears stable in time → does not affect the variability

- Science
 - River signal dominates seasonal SSS
 - Seasonal SSS lags river discharge by 30 to 50 days (0.71 correlation)
 - SSS responds to the regional drought
 - JGR special issue paper
Seasonal SSS map

2012 07

2013 07

2012 10