Science Meetings

Ocean to Land Moisture Transport is Reflected in Sea Surface Salinity
Schmitt, R.W., Schanze, J.J., Li, L., and Ummenhofer, C. (25-Feb-16)

The ocean has a much larger water cycle than the land, with global ocean evaporation of 13 Sverdrups being 10 times larger than the sum of all river flows. This disparity and the different dynamics of dry surfaces, have led to an unfortunate disconnect between terrestrial hydrologists and oceanographers. Here we show that there is in fact a close coupling between the water cycles of ocean and land. In both cases there is much local recycling of moisture, since it does not travel far in the atmosphere. We argue that the most important water cycle variable is the net export (or import) of water from (to) an area. Over the open ocean this is just evaporation minus precipitation (E-P). The "P vs E" plot is a valuable tool for identifying the source and sink regions of the water cycle. The subtropical high pressure systems are the source regions of the water cycle, with a global net export of ~4.5 Sv. The three sinks are the ITCZ in the tropics, the high latitude subpolar lows, and the land, all at about 1.5 Sv, though the subpolar lows do receive more water than the tropics, where high rainfall is maintained by much local recycling. Of course, the signature of E-P in the open ocean is the sea surface salinity (SSS), as only net freshwater fluxes can create salinity variations. With the land receiving 1/3 of the oceanic export, we should expect close coupling between terrestrial rainfall and the salinity of nearby oceans, and SSS variations have indeed been found to be valuable for seasonal rainfall forecasts on land. The remarkable 3-6 month lead of winter-spring SSS over summer rainfall appears to be mediated by the recycling process on land through soil moisture. When soil moisture is high, terrestrial regions can become more oceanic-like, with solar heating energizing evaporation and leading to down-stream propagation of the moisture signal (the "brown ocean" effect). The correlation of high SSS with high rainfall promises to be a very valuable seasonal prediction tool for a variety of regions around the world.